Some rather strange history of maths

http://ift.tt/2aZMYkA


Scientific American has a guest blog post with the title: Mathematicians Are Overselling the Idea That “Math Is Everywhere, which argues in its subtitle: The mathematics that is most important to society is the province of the exceptional few—and that’s always been true. Now I’m not really interested in the substantial argument of the article but the author, Michael J. Barany, opens his piece with some historical comments that I find to be substantially wrong; a situation made worse by the fact that the author is a historian of mathematics.

Barany’s third paragraph starts as follows:

In the first agricultural societies in the cradle of civilization, math connected the heavens and the earth. Priests used astronomical calculations to mark the seasons and interpret divine will, and their special command of mathematics gave them power and privilege in their societies.

We are taking about the area loosely known as Babylon, although the names and culture changed over the millennia, and it is largely a myth, not only for this culture, that astronomical calculations were used to mark the seasons. The Babylonian astrologers certainly interpreted the divine will but they were civil servants who whilst certainly belonging to the upper echelons of society did not have much in the way of power or privilege. They were trained experts who did a job for which they got paid. If they did it well they lived a peaceful life and if they did it badly they risked an awful lot, including their lives.

Barany continues as follows:

As early economies grew larger and more complex, merchants and craftsmen incorporated more and more basic mathematics into their work, but for them mathematics was a trick of the trade rather than a public good. For millennia, advanced math remained the concern of the well-off, as either a philosophical pastime or a means to assert special authority.

It is certainly true that merchants and craftsmen in advanced societies – Babylon, Greece, Rome – used basic mathematics in their work but as these people provide the bedrock of their societies ­– food, housing etc. – I think it is safe to say that their maths based activities were in general for the public good. As for advanced maths, and here I restrict myself to European history, it appeared no earlier than 1500 BCE in Babylon and had disappeared again by the fourth century CE with the collapse of the Roman Empire, so we are talking about two millennia at the most. Also for a large part of that time the Romans, who were the dominant power of the period, didn’t really have much interest in advance maths at all.

With the rebirth of European learned culture in the High Middle ages we have a society that founded the European universities but, like the Romans, didn’t really care for advanced maths, which only really began to reappear in the fifteenth century. Barany’s next paragraph contains an inherent contradiction:

The first relatively widespread suggestions that anything beyond simple practical math ought to have a wider reach date to what historians call the Early Modern period, beginning around five centuries ago, when many of our modern social structures and institutions started to take shape. Just as Martin Luther and other early Protestants began to insist that Scripture should be available to the masses in their own languages, scientific writers like Welsh polymath Robert Recorde used the relatively new technology of the printing press to promote math for the people. Recorde’s 1543 English arithmetic textbook began with an argument that “no man can do any thing alone, and much less talk or bargain with another, but he shall still have to do with number” and that numbers’ uses were “unnumerable” (pun intended).

Barany says, “that anything beyond simple practical math ought to have a wider reach…” and then goes on to suggest that this was typified by Robert Recorde with his The Grounde of Artes from 1543. Recorde’s book is very basic arithmetic; it is an abbacus or reckoning book for teaching basic arithmetic and book keeping to apprentices. In other words it is a book of simple practical maths. Historically what makes Recorde’s book interesting is that it is the first such book written in English, whereas on the continent such books had been being produced in the vernacular as manuscripts and then later as printed books since the thirteenth century when Leonardo of Pisa produced his Libre Abbaci, the book that gave the genre its name. Abbaci comes from the Italian verb to calculate or to reckon.

What however led me to write this post is the beginning of Barany’s next paragraph:

Far more influential and representative of this period, however, was Recorde’s contemporary John Dee, who used his mathematical reputation to gain a powerful position advising Queen Elizabeth I. Dee hewed so closely to the idea of math as a secret and privileged kind of knowledge that his detractors accused him of conjuring and other occult practices.

Barany is contrasting Recorde, man of the people bringing mathematic to the masses in his opinion with Dee an elitist defender of mathematics as secret and privileged knowledge. This would be quite funny if it wasn’t contained in an essay in Scientific American. Let us examine the two founders of the so-called English School of Mathematics a little more closely.

Robert Recorde who obtained a doctorate in medicine from Cambridge University was in fact personal physician to both Edward VI and Queen Mary. He served as comptroller of the Bristol Mint and supervisor of the Dublin Mint both important high level government appointments. Dee acquired a BA at St John’s College Cambridge and became a fellow of Trinity College. He then travelled extensively on the continent studying in Leuven under Gemma Frisius. Shortly after his return to England he was thrown into to prison on suspicion of sedition against Queen Mary; a charge of which he was eventually cleared. Although consulted oft by Queen Elizabeth he never, as opposed to Recorde, managed to obtain an official court appointment.

On the mathematical side Recorde did indeed write and publish, in English, a series of four introductory mathematics textbooks establishing the so-called English School of Mathematics. Following Recorde’s death it was Dee who edited and published further editions of Recorde’s mathematics books. Dee, having studied under Gemma Frisius and Gerard Mercator, introduced modern cartography and globe making into Britain. He also taught navigation and cartography to the captains of the Muscovy Trading Company. In his home in Mortlake, Dee assembled the largest mathematics library in Europe, which functioned as a sort of open university for all who wished to come and study with him. His most important pupil was his foster son Thomas Digges who went on to become the most important English mathematical practitioner of the next generation. Dee also wrote the preface to the first English translation of Euclid’s Elements by Henry Billingsley. The preface is a brilliant tour de force surveying, in English, all the existing branches of mathematics. Somehow this is not the picture of a man, who hewed so closely to the idea of math as a secret and privileged kind of knowledge. Dee was an evangelising populariser and propagator of mathematics for everyman.

It is however Barany’s next segment that should leave any historian of science or mathematics totally gobsmacked and gasping for words. He writes:

In the seventeenth century’s Scientific Revolution, the new promoters of an experimental science that was (at least in principle) open to any observer were suspicious of mathematical arguments as inaccessible, tending to shut down diverse perspectives with a false sense of certainty.

What can I say? I hardly know where to begin. Let us just list the major seventeenth-century contributors to the so-called Scientific Revolution, which itself has been characterised as the mathematization of nature (my emphasis). Simon Stevin, Johannes Kepler, Galileo Galilei, René Descartes, Blaise Pascal, Christiaan Huygens and last but by no means least Isaac Newton. Every single one of them a mathematician, whose very substantial contributions to the so-called Scientific Revolution were all mathematical. I could also add an even longer list of not quite so well known mathematicians who contributed. The seventeenth century has also been characterised, by more than one historian of mathematics as the golden age of mathematics, producing as it did modern algebra, analytical geometry and calculus along with a whole raft full of other mathematical developments.

The only thing I can say in Barany’s defence is that he in apparently a history of modern, i.e. twentieth-century, mathematics. I would politely suggest that should he again venture somewhat deeper into the past that he first does a little more research.



from Hacker News http://ift.tt/YV9WJO
via IFTTT